a2 United States Patent

New

US009424054B2

US 9,424,054 B2
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DRIVER FILE CONVERSION SYSTEM

(71) Applicant: Dell Products L.P., Round Rock, TX
(US)

(72) Inventor: Joshua New, San Francisco, CA (US)

(73) Assignee: Dell Products L.P., Round Rock, TX
(US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 381 days.

(21) Appl. No.: 13/895,098

(*) Notice:

(22) Filed: May 15, 2013
(65) Prior Publication Data
US 2014/0344560 A1l Nov. 20, 2014
(51) Imt.ClL
GO6F 9/44 (2006.01)
GO6F 9/445 (2006.01)
(52) US.CL
CPC GO6F 9/44505 (2013.01); GOGF 9/4411

(2013.01)
(58) Field of Classification Search
CPC o GOG6F 9/4411; GOGF 8/63
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,804,774 B1* 10/2004 Larvoireetal.cc...... 713/2

7,334,157 B1* 2/2008 Grafetal. 714/13

7,565,517 B1* 7/2009 Arboncccocoviivieieiinnnn 713/1
7,743,242 B2 6/2010 Oberhaus et al.

2003/0233644 Al* 12/2003 Cohenetal.c.......... 717/171

2007/0294703 Al* 12/2007 Taluetal.ccccovenene. 719/310
OTHER PUBLICATIONS

Microsoft, General Syntax Rules for INF Files, Sep. 29, 2011,
Microsoft Website via Way Back Machine.*

30

N

Microsoft, INF Version Section, Oct. 21, 2011, Microsoft Website via
Way Back Machine. *

Microsoft, INF SourceDiskNames Section, Oct. 21, 2011, Microsoft
Website via Way Back Machine.*

Microsoft, INF SourceDisksFiles Section, Oct. 21, 2011, Microsoft
Website via Way Back Machine.*

Microsoft, INF Manufacturer Section, Oct. 22, 2011, Microsoft
Website via Way Back Machine.*

Microsoft, INF Models Section, Oct. 22, 2011, Microsoft Website via
Way Back Machine. *

Microsoft, INF DDInstall Section, Oct. 22, 2011, Microsoft Website
via Way Back Machine *

Microsoft, INF Strings Section, Oct. 21, 2011, Microsoft Website via
Way Back Machine. *

* cited by examiner

Primary Examiner — Jaweed A Abbaszadeh
Assistant Examiner — Gary Collins
(74) Attorney, Agent, or Firm — Haynes and Boone, LL.P

(57) ABSTRACT

A method for creating an offline script format driver file from
an INF file includes replacing variables with associated value
data. Version data and a unique identifier are captured and
stored. Disk identification data is retrieved and combined
with data that references the disk identification data in order
to create and store a list of disk names and files within those
disk names. A list is created of all possible models sections
from value data included in a manufacturer value name to
determine which models sections support which operating
systems. Information that describes which models section is
compatible with which operation system is created and
stored. For DDInstall sections that include device driver
installation details, sections directives that include registry
actions or file actions are processed. The method provides an
offline script format driver file that is operable to provide for
offline driver installation in an information handling system
(IHS).

20 Claims, 3 Drawing Sheets

1
PROCESS OS VERSION
READ INF FILE INTO MEMORY COMPATIBILITY OF MODELS
302 SECTIONS
312

l

!

304

REPLACE STRINGS SECTION

PROCESS MODELS
SECTION
34

l

l

PROCESS VERSION SECTION

PROCESS DDINSTALL

SECTION(S)
316
PROCESS SECTION
PROCESS DISK NAMES AND DIRECTIVES AND VALUE
FILES NAMES
308

l

1

310

PROCESS MANUFACTURERS
SECTION

PROCESS DIRECTIVE
SECTIONS
320

[

US 9,424,054 B2

Sheet 1 of 3

Aug. 23, 2016

U.S. Patent

I "Old

I e s Tt P T T)

v
-~

]

iy,

US 9,424,054 B2

Sheet 2 of 3

Aug. 23, 2016

U.S. Patent

A

¢ Old
00Z SHI
90¢ — =—
y02 20¢
ONISSIDOHd ISEINEOEL
YIAIYQ LVWHO 3714 4NI I714 4NI
1dIMOS INIT440

US 9,424,054 B2

Sheet 3 of 3

Aug. 23, 2016

U.S. Patent

0ze
SNOILO3S
JAILOIHIA SSTO0Nd

A

01€
NOILO3S
SYIYNLOVANNYIN SSTO0Hd

:1 2
S3INVN
IANTVA ANV SIAILOTHIA
NOILO3S SS3D0dd

[

80¢
SERE
ANV STANVYN YSIa SS300dd

91¢€
(SINOILD3S
TIVLSNIAA SS300Hd

90¢
NOILO3S NOISHIA SSFO0Ud

vi€
NOILO3S
S713A0ON SSI00Yd

A

3
NOILO3S SONIYLS OV 1d3Y

(453
SNOILO3FS
ST3AON 40 ALITIFILVdNOD
NOISH3IA SO SS300dd

4

%

20¢
AHOWIN OLNI 114 INI Av3d

00¢

US 9,424,054 B2

1
DRIVER FILE CONVERSION SYSTEM

BACKGROUND

The present disclosure relates generally to information
handling systems, and more particularly to driver file conver-
sion system for information handling systems.

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option is an information handling
system (IHS). An [HS generally processes, compiles, stores,
and/or communicates information or data for business, per-
sonal, or other purposes. Because technology and informa-
tion handling needs and requirements may vary between dif-
ferent applications, IHSs may also vary regarding what
information is handled, how the information is handled, how
much information is processed, stored, or communicated, and
how quickly and efficiently the information may be pro-
cessed, stored, or communicated. The variations in IHSs
allow for IHSs to be general or configured for a specific user
or specific use such as financial transaction processing, airline
reservations, enterprise data storage, or global communica-
tions. In addition, IHSs may include a variety of hardware and
software components that may be configured to process,
store, and communicate information and may include one or
more computer systems, data storage systems, and network-
ing systems.

THS operating systems use driver files to install drivers on
the THS in order to use those drivers to operate or control
devices attached to the IHS. For example, the WINDOWS®
operating system uses plain text files, called information
(INF) files, for installation of software and drivers. The INF
files include all the information the operating system needs to
install the driver, but the relationships in the data structure of
the INF file are very complex. In some situations, it is desir-
able to take an offline image (e.g., when there is no access to
a running instance of the operating system) on a first IHS and
store that offline image on a second IHS. It is very compli-
cated to install a driver using an INF file when there is no
access to a running instance of the operating system, and
requires the use of a special operating system tool along with
the offline operating system each time the driver is installed
on an offline image. Furthermore, without with complicated
installation process that must be performed each time a driver
is to be installed on an offline image, the operating system will
likely have trouble booting due to differences in the hardware
of the IHSs.

Accordingly, it would be desirable to provide an improved
driver file system for offline image driver installation.

SUMMARY

According to one embodiment, an offline script format
driver file creation system includes a processing system; a
memory system coupled to the processing system and includ-
ing instruction that, when executed by the processing system,
causethe processing system to provide at least one engine that
is operable to: read a driver installation file into the memory
system such that a representation of the driver installation file
is stored in the memory system; replace variables in the
representation of the driver installation file with associated
value data from a first section of the driver installation file that
provides variable to string substitution values; process a sec-
ond section in the representation of the driver installation file
that provides information about the driver installation file and
a type of device the driver installation file supports, wherein
the processing the second section includes capturing version

40

45

50

2

data and a unique identifier in the representation of the driver
installation file and storing that version data and unique iden-
tifier in the memory system; process a third section in the
representation of the driver installation file that provides a list
of distribution disks that contain the files required for instal-
lation and operation of the driver installation file, a list of files
used during installation of the driver installation file, and
associated disks and directories on those disks, wherein the
processing the third section includes retrieving disk identifi-
cation data and combining the disk identification data with
data that references the disk identification data in order to
create and store a list of disk names and files within those disk
names in the memory system; process a fourth section in the
representation of the driver installation file that includes
information used to identify operating systems supported by
the driver installation file, wherein the processing of the
fourth section creates a list of all possible models sections
from value data included in a manufacturer value name to
determine which models sections support which operating
systems; process a fifth section in the representation of the
driver installation file that includes operating system compat-
ibility details for specific models of hardware, wherein the
processing of the fifth section includes creating and storing
information that describes which models section in the driver
installation file is compatible with which operation system;
and process a sixth section in the representation of the driver
installation file that includes plug and play hardware identi-
fications that the driver installation file is compatible with
and, for each portion of the sixth section that includes device
driver installation details, process sections directives in that
portion that include registry actions or file actions; wherein
the processing of the first section, the second section, the third
section, the fourth section, the fifth section, and the sixth
section provides an offline script format driver file that is
operable to provide for offline driver installation in an infor-
mation handling system (IHS).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a schematic view illustrating an embodiment of an
information handling system.

FIG. 2 is a schematic view illustrating an embodiment of an
information handling system.

FIG. 3 is a flow chart illustrating an embodiment of a
method for processing a collection of driver installation files.

DETAILED DESCRIPTION

For purposes of this disclosure, an IHS may include any
instrumentality or aggregate of instrumentalities operable to
compute, classify, process, transmit, receive, retrieve, origi-
nate, switch, store, display, manifest, detect, record, repro-
duce, handle, or utilize any form of information, intelligence,
or data for business, scientific, control, entertainment, or
other purposes. For example, an IHS may be a personal com-
puter, a PDA, a consumer electronic device, a display device
ormonitor, a network server or storage device, a switch router
or other network communication device, or any other suitable
device and may vary in size, shape, performance, functional-
ity, and price. The IHS may include memory, one or more
processing resources such as a central processing unit (CPU)
or hardware or software control logic. Additional components
of the IHS may include one or more storage devices, one or
more communications ports for communicating with external
devices as well as various input and output (I/O) devices, such
as akeyboard, a mouse, and a video display. The IHS may also

US 9,424,054 B2

3

include one or more buses operable to transmit communica-
tions between the various hardware components.

In one embodiment, IHS 100, FIG. 1, includes a processor
102, which is connected to a bus 104. Bus 104 serves as a
connection between processor 102 and other components of
THS 100. An input device 106 is coupled to processor 102 to
provide input to processor 102. Examples of input devices
may include keyboards, touchscreens, pointing devices such
as mouses, trackballs, and trackpads, and/or a variety of other
input devices known in the art. Programs and data are stored
on a mass storage device 108, which is coupled to processor
102. Examples of mass storage devices may include hard
discs, optical disks, magneto-optical discs, solid-state storage
devices, and/or a variety other mass storage devices known in
the art. ITHS 100 further includes a display 110, which is
coupled to processor 102 by a video controller 112. A system
memory 114 is coupled to processor 102 to provide the pro-
cessor with fast storage to facilitate execution of computer
programs by processor 102. Examples of system memory
may include random access memory (RAM) devices such as
dynamic RAM (DRAM), synchronous DRAM (SDRAM),
solid state memory devices, and/or a variety of other memory
devices known in the art. In an embodiment, a chassis 116
houses some or all ofthe components of THS 100. It should be
understood that other buses and intermediate circuits can be
deployed between the components described above and pro-
cessor 102 to facilitate interconnection between the compo-
nents and the processor 102.

The systems and methods of the present disclosure auto-
matically convert a collection of conventional driver installa-
tion files to offline script format driver files that allows for
offline driver installation inan IHS, i.e., installation of a driver
in the THS when an instance of the operation system is not
booted, running, etc. The offline script format driver files,
created from the conventional driver installation files by the
systems and according to the methods described herein in a
single offline preparation, may be booted on any of the mod-
els of devices that are supported by the conventional driver
installation and may be packaged for use in installing the
driver offline on any of a plurality of IHSs or operating sys-
tems instances. The offline script format driver files allow the
movement of offline images between different IHS easily as
long as the receiving IHS has the correct hardware for those
offline script format driver files. Furthermore, if an offline
image is to be moved to a destination IHS or IHS(s) that do not
have the correct hardware for a given offline script format
driver file, the correct collection of conventional driver instal-
lation files for the destination IHS’s hardware may be con-
verted on-the-fly to the correct offline script format driver
files using the systems and methods of the present disclosure
in order to enable movement of the offline image to the
destination IHS(s). Thus, the systems and methods of the
present disclosure allow for offline IHS image migration with
a collection of conventional driver installation files by con-
verting them to offline script format driver files at runtime,
rather than having to rely on a repository of manually created
offline script format driver files that may not include all the
needed drivers for any IHS configuration.

In the embodiments discussed below, the collection of
conventional driver installation files are INF driver files that
are converted to offline script format driver files that include
scripts that may be used to apply registry changes to an offline
registry hive in order to prepare an offline WINDOWS®
operating system image for retargeting to one or many difter-
ent booting mechanisms such as, for example, Internet Small
Computer System Interface (iSCSI) software initiator boot-
ing, local disk SCSI Host Bus Adapter (HBA) booting, Fiber

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Channel HBA booting, and/or a variety of other booting
mechanisms known in the art. The offline script format driver
files allow for the application of changes to a plurality of
destination IHSs without having to reconvert the INF driver
files. Furthermore, conversion of INF driver files to the offline
script format driver files for use as part of an offline driver
installation package may be performed on-the-fly or in order
to provide the offline script format driver files for distribution
as part of an offline driver installation package.

Referring now to FIG. 2, an embodiment of an ITHS 200 is
illustrated that is operable to convert INF driver files to oftline
script format driver files as discussed above. In an embodi-
ment, the IHS 200 may be the IHS 100 and/or include some or
all of the components of the IHS 100, discussed above with
reference to FIG. 1. In a specific embodiment, the compo-
nents of the IHS 200 may be included in or coupled to a server
migration utility (SMU) tool in order to provide the SMU tool
offline script format driver files created from conventional
INF driver files. The THS 200 includes an INF driver file
receiver system 202 that may include combinations of hard-
ware and software that operate to receive an INF file. For
example, the INF driver file receiver system 202 may include
network communication hardware and software, input/output
(I/0) communication hardware and software, and/or a variety
of other hardware and software known in the art that would be
operable to receive an INF driver file (e.g., downloaded over
a network, provided on a storage medium through a storage
device the THS 200, etc.)

The INF file receiver system 202 is coupled to an INF file
processing engine 204. In an embodiment, the INF file pro-
cessing engine 204 includes instructions that, when executed
by a processor in the IHS 200, cause the processor to perform
the functions of the INF file processing engine 204 as detailed
according to the method 300 discussed below. The INF file
processing engine 204 is coupled to an offline script format
driver file provider system 206 that may include combina-
tions of hardware and software that operate to provide an
offline script format driver file to a destination IHS or IHS(s).
For example, the offline script format driver file provider
system 206 may include network communication hardware
and software, input/output (I/O) communication hardware
and software, buses, and/or a variety of other hardware and
software known in the art that would be operable to provide
offline script format driver files to a destination IHS or storage
for later provision to a destination IHS (e.g., over a network,
directly to a destination IHS, directly to a storage medium
through a storage device the IHS 200, etc.)

Referring now to FIG. 3, an embodiment of a method 300
for processing INF driver files is illustrated. Each block of the
method 300 will now be presented below following a separate
heading for clarity of discussion and reference to FIG. 3, but
such presentation should not be interpreted as requiring any
specific ordering of the method blocks unless otherwise
noted.

Read INF File into Memory

The method 300 begins at block 302 where an INF driver
file is read into memory. In an embodiment, an INF driver file
is provided to the IHS 200 through the INF file receiver
system 202. For example, an offline WINDOWS® operating
system image may be retargeted for a server that has a specific
booting mechanism requiring a specific driver, and the INF
driver file for that driver may be provided by the user to the
INF file receiver system 202 (e.g., by directing the INF file
receiver system 202 to the INF driver file over a network such
as the Internet, providing a storage medium including the INF
driver file in a storage device on the IHS 200, etc.) The INF
file receiver system 202 then retrieves the INF driver file and

US 9,424,054 B2

5

provides the INF driver file to the INF file processing engine
204, which stores a representation of the INF driver file in a
memory data structure (e.g., the system memory 114) in the
THS 200 such that the representation of INF driver file may be
easily navigated (e.g., via code), as discussed below. For
example, an offline script format driver file may be created
and an entry in a [files] section of the offline script format
driver file is added that provides an instruction to copy the
INF file to the destination WINDOWS® install that looks
like:

copy inffilename.inf
OemInf@.inf

An embodiment of the entry above has the %InjectWindows-
Dir% including the DestinationDriveletter:\\WindowsDirec-
tory, with DestinationDriveletter being the drive letter of the
destination Windows operating system drive and Windows-
Directory being the name of the WINDOWS® directory on
the destination drive (e.g., the name of the WINDOWS®
directory is typically “Windows”, however, in case the WIN-
DOWS® installation is not the default of “Windows”, what-
ever name is used may be subbed in as WindowsDirectory
above.)

In an embodiment, @OemInf@ is determined by the
offline script processor and is a 3 digit number that is unique
on the destination file system. Throughout the method dis-
cussed below, the same unique 3 digit number may be used in
the offline script format driver file as @OemInf(@.

Replace Strings Sections

The method 300 then proceeds to block 304 where string
section replacement is performed. As is known in the art, INF
driver files may include Strings sections that provide variable
to string substitution values. For example, an INF driver file
may include a Strings section that associates the variable
%MyManufacturer% with value data Manufacturer X, Inc.
(e.g., MyManufacturer="Manufacturer X, Inc”). In an
embodiment, at block 304, the INF file processing engine 204
parses the representation of the INF driver file in the memory
data structure and replaces each variable (e.g., %MyManu-
facturer%) in the representation of the INF driver file in the
memory data structure with the associated value data in the
Strings section of the INF driver file (e.g., “Manufacturer X,
Inc.”). For example, variables in INF driver files are formatted
by including a percentage sign on either side of the variable
(e.g., Y%MyManufacturer%.) Thus, in an embodiment of
block 304 of the method 300, the INF file processing engine
204 parses the text to find variables defined according to this
format, and replaces those variables with associated value
data in the strings section that correspond to those variables.

Process Version Section

The method 300 then proceeds to block 306 where the
version section is processed. As is known in the art, INF driver
files may include version sections that provide general infor-
mation about the driver and type of device the driver supports.
In an embodiment, at block 306, the INF file processing
engine 204 may first test the version section for validity. For
example, the INF file processing engine 204 may test for the
validity of the version section by testing the representation of
the INF driver file in the memory data structure for all
required value names and their associated values, as is known
in the art. If the version section is not valid, the INF file
processing engine 204 may exit and notify the user that the
INF driver file is invalid. If the version section is valid, the
INF file processing engine 204 will then capture the version
data in the representation of the INF driver file in the memory
data structure and the Class Globally Unique Identifier
(GUID) in the representation of the INF driver file in the
memory data structure, and store the version data and Class

%InjectWindowsDir%\infloem@)

10

15

20

25

30

35

40

45

50

55

60

65

6

GUID (which may be referred to henceforth as simply
“ClassGUID”) in a separate storage area for later access (e.g.,
so that the representation of the INF driver file in the memory
data structure does not need to be reparsed to retrieve them.)
Furthermore, the INF file processing engine 204 may also
determine whether a CatalogFile value name exists in the INF
driver file. If a CalalogFile value name exists, the INF file
processing engine will queue the creation of a line in an
offline script format driver file that provides for a file copy
operation that is operable to copy the catalog (CAT) file
(which may be referred to henceforth as “catalogfile.cat”) to
the destination that is required by the operating system. The
INF file processing engine 204 will also capture the provider
value data in the INF driver file and store it in a separate
storage area for later access (e.g., so that the representation of
the INF driver file in the memory data structure does not need
to be reparsed to retrieve them.) In an embodiment, corre-
sponding entries for the offline script format driver file cre-
ated from the processing of the service-install-section section
(e.g., a script line in the [files] section of the offline script
format driver file) may result in the following lines in an
example where the destination WINDOWS® image is WIN-
DOWS® 2003 thru WINDOWS® 2008:
Copy catalogfile.cat %InjectWindowsDir%\system32\
CatRoot\{F750B6C3-38EE-11D1-85E5-00C04FC295EE 1\
oem%0OemlInfcYo.cat.

Process Disk Names and Files

The method 300 then proceeds to block 308 where disk
names and files are processed. As is known in the art, INF
driver files may include disk names and files in the Source-
DiskFiles and SourceDiskNames sections. The SourceDis-
kNames section provides the list of distribution disks that
contain the files required for installation and operation of the
driver, while the SourceDiskFiles section provides the list of
files used during installation of the driver and their associated
disks and directories on the disks. In an embodiment, at block
308, the INF file processing engine 204 may process the
SourceDiskNames section (as provided in the representation
of the INF file in the memory data structure) to retrieve disk
identification data, and that disk identification data may then
be combined with SourceDiskFiles data that references the
SourceDiskNames disk identification data (as provided in the
representation of the INF file in the memory data structure) in
order to get a list of disk names, and files within those disk
names, as contained in the SourceDiskFiles section. The pro-
cessing of the SourceDiskFiles section in the INF driver file
may be based on a desired operating system architecture that
may include a x86 (32-bit) operating system architecture, an
amdo64 (64-bit) operating system architecture, and/or any of
the operating system architectures discussed herein. In one
example, processing the SourceDiskFlles section in the INF
driver file based on a desired operating system architecture
may include determining, using the representation of the INF
file in the memory data structure, which SourceDiskFiles
section to process based on the desired destination operating
system architecture. The INF file processing engine 204 will
then store the list of disk names and files within those disk
names in a separate storage area for later access so that the
representation of the INF driver file in the memory data struc-
ture does not need to be reparsed.

Process DestinationDirs and File-List-Section Sections

The various value names in the DestinationDirs section are
names of file-list-section sections with the exception of the
DefaultDestDir value name. The values of all the value names
in the DestinationDirs section are pointers to the directory on
the destination WINDOWS® OS volume, eg. Filelistsection-
name=10,\SysWOW64. The first value is the dirid which is a

US 9,424,054 B2

7

number. The dirid numbers correspond to directories. The
dirid values can be found in the WINDOWS® Driver Kit
documentation. The second value is a subdirectory below the
dirid defined directory. The DefaultDestDir value name is
used where copy, rename or delete operations don’t reference
a specific file-list-section section. The format for the values
used for the DefaultDestDir value name is the same as the
other named value names. Substitution of the dirid number
with the real directory name plus the subdirectory (if it exists)
should be done at this time and stored with a correlation to the
file-list-section name for later retrieval during the processing
of the CopyFiles, RenFiles and DelFiles directives process-
ing.

Process Manufacturers Section

The method 300 then proceeds to block 310 where manu-
facturers section is processed. As is known in the art, INF
driver files may include a Manufacturers section that includes
information that, once processed, may be used to identify the
Models section names in the INF file and which operating
system versions and architectures are supported by the INF
file and drivers. In an embodiment, at block 310, the INF file
processing engine 204 may create a list of all possible Models
sections from value data included in the Manufacturers value
name in the Manufacturers section of the INF driver file. As is
known in the art, there can be more than one line in the
Manufacturers section of the INF driver file, and thus in some
examples, the INF file processing engine 204 will read every
line in the Manufacturers section of the INF driver file to
retrieve and create the list of all possible Models sections. The
INF file processing engine 204 then determines which Mod-
els sections support which operating system versions from
the list of all possible Models sections. This information is
stored for later usage and retrieval.

Process Operating System Version Compatibility of Mod-
els Sections

The method 300 then proceeds to block 312 where an
operating system version compatibility of a Models section is
processed. As is known in the art, INF driver files may include
a Models section that includes an operating system compat-
ibility decoration that provides operating system compatibil-
ity details for the specific models of the hardware listed within
that specific Models section. In an embodiment, at block 312,
the INF file processing engine 204 may first determine the
operating system compatibility of the Models section in rep-
resentation of the INF driver file in the memory data structure
using the decoration of the Models section name. As is known
in the art, the Models section name in the INF driver file may
include no decoration or decorations such as “x86” with no
operating system version, “amd64” with no operating system
version, and/or a variety of other decorations known in the art.
In one example, if the decoration of the Models section name
is blank or no decoration is included, the INF file processing
engine 204 may determine that the INF driver file is compat-
ible with all operating system versions and architectures. In
another example, if the decoration of the Models section
name includes “x86” with no operating system version, the
INF file processing engine 204 may determine that the INF
driver file is compatible with all operating system versions
and only 32-bit architecture. In another example, if the deco-
ration of the Models section name includes “amd64” with no
operating system version, the INF file processing engine 204
may determine that the INF driver file is compatible with all
operating system versions and only amd64 architecture.
While a few examples of determining the operating system
compatibility of the Models section in representation of the
INF driver file in the memory data structure using the deco-
ration of the Models section name have been provided, cur-

10

15

20

25

30

35

40

45

50

55

60

65

8

rent WINDOWS® Driver Kit documentation may be refer-
enced for information about how to determine operating
system compatibilities using the decoration in the Models
section name in the INF driver file (e.g., under Device and
Driver Installation—Reference—INF File Sections and
Directives—INF Sections—INF Manufacturer
Section—Comment topic).

The INF file processing engine 204 may then store which
Models section in the INF driver file is compatible with which
operating system versions and architectures in a separate
storage area for later access (e.g., so that the representation of
the INF driver file in the memory data structure does not need
to be reparsed to retrieve them.), and the that information may
be used in creating the offline script format driver file.

Process Models Sections

The method 300 then proceeds to block 314 where a Mod-
els section is processed. As is known in the art, INF driver files
may include a Models section that provides the Plug and Play
(PnP) hardware identifications that the INF driver file is com-
patible with. In an embodiment, at block 312, the INF file
processing engine 204 locates a first Models section in the list
of all possible Models sections created at block 310 of the
method 300. The INF file processing engine 204 then reads at
least one line of this first Models section and stores the
device-description, the install-section-name (i.e., the Device
Driver install (DDInstall) section name), the hardware iden-
tification (hardware-id), and the compatibility identification
(compatible-id) in that at least one line of that first Models
section. The method 300 may then proceed to block 314 to
process the DDInstall section in the first Models section using
the DDInstall section name and store the additional value data
gathered, as discussed below. In embodiments where there
are no lines in the Models section, the operating system
version that matches the operating system decoration on that
Models section will be determined to be unsupported and will
be marked as unsupported in the memory data structure.
Every operating system version between the empty Models
section and the next operating system version represented as
a decorated Models section is unsupported. An undecorated
Models section means that it supports all operating system
versions. If there is an empty undecorated models section but
there are also non-empty decorated sections then the deco-
rated sections take precedent. See the WINDOWS® Driver
Kit documentation for further details. In an embodiment, the
processing on each line in the Models section may result in
the corresponding lines in the offline script format driver file:
[A “YControlSet00%Current%\Control\CriticalDevice
Database\hardware-id”]

A ClassGUID: Sz=“ClassGUID”

A Service: Sz="ServiceName”

In an embodiment, values for the hardware-id, ClassGUID
and ServiceName above may be obtained from processing the
Models section line, Version section, and the AddService
directive from the DDlInstall[.processordecoration].Services
section, respectively.

PROCESS DDINSTALL (Also Known as Install-Section-
Name) SECTION(S)

The method 300 then proceeds to block 316 where DDIn-
stall section(s) are processed. As is known in the art, Models
sections in INF driver files include DDlInstall sections that
provide device driver installation details. The DDInstall sec-
tion may be decorated with a processor architecture decora-
tion (e.g., .nt, .ntx86, .ntamd64, etc., as described in the
WINDOWS® Driver Kit documentation.) The DDlInstall
word used here is substituted with the install-section-name as
gathered in the processing above according to the PROCESS
MODELS SECTION. In an embodiment, at block 316, the

US 9,424,054 B2

9

INF file processing engine 204 processes each DDlInstall
section in the representation of the INF driver file in the
memory data structure including, but not limited to, DDIn-
stall, DDInstall.Services, DDInstall. HW, DDInstall.Coln-
stallers, DDlInstall.FactDef, DDInstall. LogConfigOverride,
DD Install. Interfaces and/or DDInstall. WMI. If the DDIn-
stall section is decorated with a processor architecture deco-
ration, then the other sections need to have the decoration as
well, e.g., DDlInstall.ntx86 may have a
DDlnstall.ntx86.Services section. The INF file processing
engine is operable to loop through each of the lines in the first
Models section located in block 314 one at a time and process
the section directives in each DDInstall section as discussed
with respect to block 318 below. When the section directives
in each of the DDINstall section of the first Models section
have been processed, the INF file processing engine 204 will
then begin processing the other Models sections (e.g., a sec-
ond Models section, a third Models section, etc.) in the INF
driver file.

PROCESS DDINSTALL|.processordecoration].Services
SECTIONS

DDlnstall[.processordecoration].Services sections must
contain one or more AddServices directives. Process all the
directives as specified below.

PROCESS DDINSTALL|.processordecoration]. HW, .Co
Installers, .FactDef, .LogConfigOverride, .Interfaces,
and .WMI SECTIONS

While it is not necessary to process the DDINSTALL[.pro-
cessordecoration].HW section and associated entries, the
DDINSTALL[.processordecoration].Colnstallers sections
and associated entries, the DDINSTALL|[.processordecora-
tion].FactDef sections and associated entries, the DDIN-
STALL[.processordecoration]|.LogConfigOverride sections
and associated entries, the DDINSTALL|[.processordecora-
tion].Interfaces sections and associated entries, and the
DDINSTALL[.processordecoration] WMI sections and
associated entries of the INF file in order to allow a target
operating system to boot, more complete processing of the
INF file may include performing a method block that per-
forms such processing.

Process Section Directives and Value Names

The method 300 then proceeds to block 318 where section
directives and value names are processed. In an embodiment,
block 318 of the method 300 may be performed during the
processing of any sections of the INF file that include direc-
tives, as directives can appear in almost any section ofthe INF
file, and those directives will be processed according the
method 300 using substantially similar operations regardless
of which section the directive is located. While a few
examples of section directive information in DDInstall sec-
tions are discussed below, DDInstall sections are not the only
sections of the INF file with section directives, as other sec-
tions of the INF file may have one or more applicable section
directives as detailed by current WINDOWS® Driver Kit
documentation (e.g., under Device and Driver
Installation—Reference—INF File Sections and
Directives—INF Directives). Furthermore, some sections of
the INF file may have non-directive lines, and those non-
directive lines may require special operations performed dur-
ing the method 300 (e.g., for sections in the INF file that are
only referred to by directives that have section references in
the value data.)

As is known in the art, Models sections in INF driver files
include DDlInstall sections that include section directives and
value names that provide various details about the install
process such as, for example, where a file is to be copied,
details about various registry adds, deletes, or changes, etc. In
an embodiment, at block 318, the INF file processing engine
204 may process the section directives and value names, and

10

15

20

25

30

35

40

45

50

55

60

65

10

if a directive points to another section or other sections, the
INF file processing engine 204 may process that section or
those sections and their section directives and value names.
For example, for each directive, there may be references to
another section, and that section may have more directives
that refer to additional sections for processing. Such sections
may be processed recursively at block 318, looping back for
continued processing. However, in cases where another INF
file is referenced, the method 300 may start from beginning
unless the reference is only to a specific section of that INF
file, in which case recursive processing continues on that INF
file. Examples of some of the section directives that may be
processed and some of the actions that may be taken during
that processing are provided below. However, current WIN-
DOWS® Diriver Kit documentation may be referenced for
information about other section directives that may be pro-
cessed at block 318. Such sections may or may not be men-
tioned below, and while their processing may not be neces-
sary to allow a target operating system to boot, more complete
processing of the INF file may include performing a method
block that performs such processing.

In one example, an AddInterface section directive may be
included in a DDInstall.Interfaces section of a Models sec-
tion. For example, an AddInterfaces section directive may be
provided in an INF driver file as
Addinterface={InterfaceClassGUID} [,[reference string]
[,add-interface-section] [,flags]]]. Processing of an AddInter-
face section directive may include recording the Interface-
ClassGUID for later use, and examples of the processing of an
add-interface-section section are provided below for different
add-interface-section values.

In another example, an AddPowerSetting section directive
may be included in a DDInstall section, a DDinstal. HW
section, a DDInstall.Colnstallers section, a ClassInstall32
section, a ClassInstall32.ntx86 section, a
ClassInstall32.ntia64 section, a ClassInstall32.ntamd64 sec-
tion, and/or any ClassInstall32<os_architecture_decoration>
used for supporting an operating system architecture. For
example, an AddPowerSetting section directive may be pro-
vided in an INF driver file as AddPowerSetting=add-power-
setting-section[add-power-setting-section]. Examples of
processing of an add-power-setting-section section are pro-
vided below for different add-power-setting-section values.

In another example, an AddProperty section directive may
be included in a DDlInstall section, a DDInstall.nt section, a
DDinstall.ntx86 section, a DDInstall.ntia64 section, a DDIn-
stall.ntamd64 section, a Classlnstall32 section, a
ClassInstall32.ntx86 section, a ClassInstall32.ntia64 section,
a ClassInstall32.ntamd64 section, any
ClassInstall32<os_architecture_decoration> used for sup-
porting an operating system architecture, an interface-install-
section section, an interface-install-section.nt section, an
interface-install-section.ntx86 section, an interface-install-
section.ntiab4 section, an interface-install-section.ntamd64
section, and/or an add-interface-section section. For example,
an AddProperty section directive may be provided in an INF
driver file as AddProperty=add-property-section[,add-prop-
erty-section]. Examples of processing of an add-property-
section section are provided below for different add-property-
section values.

In another example, an AddReg section directive may be
included in a DDInstall section, a DDInstal. HW section, a
DDinstall.Colnstallers section, a ClassInstall32 section, a
ClassInstall32.ntx86 section, a ClassInstall32.ntia64 section,
a Classlnstall32.ntamd64 section, and/or any
ClassInstall32<os_architecture_decoration> used for sup-
porting an operating system architecture. For example, an
AddReg section directive may be provided in an INF driver
file as AddReg=add-registry-section[,add-registry-section].
Processing of an AddReg section directive may include pro-

US 9,424,054 B2

11

cessing service-install-section sections and recording the
resulting registry changes, and creating lines for the offline
script format driver file depending on how many registry
changes were recorded. The example lines are illustrated in
the add-registry section processing below.

In another example, an AddService section directive may
be included in a DDlInstall.Services section. For example, an
AddService section directive may be provided in an INF
driver file as AddService=ServiceName,|flags],service-in-
stall-section,| event-log-install-section[,[EventLogType][,
EventName]]] Processing of an AddService section directive
may include recording ServiceName in the memory data
structure, recording flags in the memory data structure, pro-
cessing service-install-section sections and recording the
resulting registry changes, and creating lines for the offline
script format driver file depending on how many registry
changes were recorded. While it is not necessary to process
the eventlog section and associated entries of the INF file in
order to allow a target operating system to boot, more com-
plete processing of the INF file may include performing a
method block that performs such processing. The examples
lines are illustrated in the service-install-section processing
below.

In another example, a BitReg section directive may be
included in a DDInstall section, a DDinstall. HW section, a
DDInstall.Colnstallers section, a ClassInstall32 section, a
Classlnstall32.ntx86 section, a ClassInstall32.ntia64 section,
a Classlnstall32.ntamd64 section, and/or any
ClassInstall32<os_architecture_decoration> used for sup-
porting an operating system architecture. For example, a
BitReg section directive may be provided in an INF driver file
as BiReg=bit-registry-section[,bit-registry-section]. Process-
ing of a BitReg section directive may include processing each
bit-registry-section and recording the resulting registry
changes, and creating lines for the offline script format driver
file depending on how many registry changes were recorded.
The example lines are illustrated in the bit-registry-section
processing below.

In another example, a CopyFiles section directive may be
included in a DDlInstall section, a DDInstall. Colnstallers sec-
tion, a ClassInstall32 section, a ClassInstall32.ntx86 section,
a Classlnstall32.ntia64 section, a ClassInstall32.ntamd64
section, and/or any Classlnstall32<os_architecture_
decoration> used for supporting an operating system archi-
tecture. For example, a CopyFiles section directive may be
provided in an INF driver file as CopyFiles=@filenamelfile-
list-section] ,file-list-section]. Processing of a CopyFiles sec-
tion directive may include determining if @filename is speci-
fied. If the @filename is specified, it may be determined
whether the file-list-section sections are specified. If the file-
list-section sections are specified, the file-list-section sections
are processed and the resulting registry changes are recorded,
and lines are created for the offline script format driver file
such that the files will be copied, depending on how many
registry changes were recorded. If @filename is supplied then
the result of the processing DefaultDestDir directory value
from the DestinationDirs section is used. Henceforth this is
referred to an DestinationDefDir. An example would produce
the following lines in the [files] section of the offline driver
script:
copy sourcediskandpath:/filename DestinationDefDir:/file-
name

In another example, a CopyINF section directive may be
included in a DDInstall section. For example, a CopyINF
section directive may be provided in an INF driver file as
CopyINF=filenamel.inf],filename?2.inf]. Processing of a
CopyINF section directive may include creating lines for the

10

15

20

25

30

35

40

45

50

55

60

65

12

offline script format driver file. Example of lines created for
one current version of WINDOWS® may include the follow-
ing entry under the [files] section of the offline script format
driver file: copy sourcediskandpath:/filenamel.inf destina-
tiondiskandpath:/filenamel.inf, wherein sourcediskandpath
is the path to the INF file being processed and destinationdis-
kandpath is the drive letter of the destination offline WIN-
DOWS® image and the default installation directory of the
INF files/windows/inf. However, different versions of WIN-
DOWS® may result in a different destinationdiskandpath
line(s) created in response to processing the CopyINF section
directive.

In another example, a DelFiles section directive may be
included in a DDlInstall section, a DDInstall.Colnstallers sec-
tion, a ClassInstall32 section, a ClassInstall32.ntx86 section,
a Classlnstall32.ntia64 section, a ClassInstall32.ntamd64
section, and/or any Classlnstall32<os_architecture_
decoration> used for supporting an operating system archi-
tecture. For example, a DelFiles section directive may be
provided in an INF driver file as DelFiles=file-list-section],
file-list-section]. When the file-list-section sections are speci-
fied, processing of a DelFiles section directive may include
processing those file-list-sections and recording the resulting
registry changes, along with the creating of lines for the
offline script format driver file such that the files will be
deleted. The example lines are illustrated in the file-list-sec-
tion processing below.

Inanother example, a DelProperty section directive may be
included in a DDInstall section, a DDInstall.nt section, a
DDinstall.ntx86 section, a DDInstall.ntia64 section, a DDIn-
stall.ntamd64 section, a Classlnstall32 section, a
ClassInstall32.ntx86 section, a ClassInstall32.ntia64 section,
a Classlnstall32.ntamd64 section, any Classlnstall32<os_
architecture_decoration> used for supporting an operating
system architecture, an interface-install-section section, an
interface-install-section.nt section, an interface-install-sec-
tion.ntx86 section, an interface-install-section.ntia64 section,
an interface-install-section.ntamd64 section, and/or an add-
interface-section section. For example, a DelProperty section
directive may be provided in an INF driver file as
DelProperty=del-property-section[del-property-section].
Examples of processing of an DelProperty section are pro-
vided below for different DelProperty section values

In another example, a DelReg section directive may be
included in a DDInstall section, a DDInstal. HW section, a
DDInstall.Colnstallers section, a Classlnstall32 section, a
ClassInstall32.ntx86 section, a ClassInstall32.ntia64 section,
a Classlnstall32.ntamd64 section, and/or any
ClassInstall32<os_architecture_decoration> used for sup-
porting an operating system architecture. For example, a Del-
Reg section directive may be provided in an INF driver file as
DelReg=del-registry-section[,del-registry-section]. Process-
ing of a DelReg section directive may be substantially similar
to the processing of an AddReg section directive, with the
exception that lines created for the offline script format driver
file will correspond to a registry deletion operation. The
example lines are illustrated in the del-registry-section pro-
cessing below.

In another example, a DelService section directive may be
included in a DDInstall.Services section. For example, a
DelServices section directive may be provided in an INF
driver file as DelService=ServiceName][,[flags][EventlLog-
Type][,EventName]]. Processing of a DelService section
directive may include creating a line that provide for registry
deletion for the offline script format driver file, for each
DelService line. An example of a line created for one current
version of WINDOWS® may include the following [D

US 9,424,054 B2

13
HKEY LOCAL MACHINE\System\%CurrentControlSet%\
services\[ServiceName].

In another example, a DriverVer section directive may be
included in a Version section and/or a DDInstall section. For
example, a DriverVer section directive may be provided in an
INF driver file as DriverVer=mm/dd/yyyy[,w.x.y.z]. Process-
ing of'a DriverVer section directive may include parsing date
and version number information and storing that information
in a memory data structure for use when creating comments
and registry creation entries for the offline script format driver
file.

While it is not necessary to process the featurescore section
directives and associated entries, hardwareid section direc-
tives and associated entries, ini2reg section directives and
associated entries, logconfig section directives and associated
entries, profileitems section directives and associated entries,
the AddInterface section directive and associated entries, the
AddPowerSetting section directive and associated entries, the
AddProperty section directive and associated entries, and the
DelProperty section directive and associated entries of the
INF file in order to allow a target operating system to boot,
more complete processing of the INF file may include per-
forming a method block that performs such processing.

In another example, a RegisterDlls section directive may
be included in a DDlInstall section. For example, a Register-
Dlls section directive may be provided in an INF driver file as
RegisterDlls=register-dll-section[,unregister-dll-section].
Processing of a RegisterDlls section directive may include
processing register-dll-section sections and recording result-
ing registry changes, and then creating lines for the offline
script format driver file, depending on how many registry
changes were recorded.

In another example, a RenFiles section directive may be
included in a DDlInstall section, a DDInstall. Colnstallers sec-
tion, a ClassInstall32 section, a ClassInstall32.ntx86 section,
a Classlnstall32.ntia64 section, a ClassInstall32.ntamd64
section, and/or any Classlnstall32<os_architecture_
decoration> used for supporting an operating system archi-
tecture. For example, a RenFiles section directive may be
provided in an INF driver file as RenFiles=file-list-section],
file-list-section]. If the file-list-section sections are specified,
processing of a RenFiles section directive may include pro-
cessing the file-list-section sections and recording the result-
ing registry changes, along with creating the lines for the
offline script format driver file such that files will be renamed,
depending on how many registry changes were recorded.

In another example, a UnregisterDlls section directive may
be included in a DDInstall section. For example, a Unregis-
terDlls section directive may be provided in an INF driver file
as UnregisterDlls=unregister-dll-section[,unregister-dll-sec-
tion]. Processing of a UnregisterDlls section directive may
include processing unregister-dll-section sections and
recording resulting registry changes, along with creating lines
for the offline script format driver file depending on how
many registry changes were recorded.

Process Directive Sections

The method 300 then proceeds to block 320 where direc-
tive sections are processed. As is known in the art, the section
directives in the Models sections in INF driver files include
directive sections that provide, for example, registry adds/
deletes/changes or file adds/deletes/changes. As discussed
above, any of those directive sections may be processed by the
INF file processing engine 204 during the processing of the
section directives and value names in block 318. Examples of

20

35

40

45

14

some of the directive sections that may be processed and
some of the actions that may be taken during that processing
are provided below.

In one example, the directive section processed at block
320 may include a service-install-section that may be pro-
vided in the INF driver file as [service-install-section].
Examples of text in the service-install-section that are pro-
cessed at block 320 include [DisplayName=name],
[Description=description-string]|, [ServiceType=type-code],
[StartType=start-code], [ErrorControl=error-control-level,
[ServiceBinary=path-to-service], [StartName=driver-object-
name]|, [AddReg=Add-registry-section[,add-registry-sec-
tion] . . . |, DelReg=del-registry-section|,del-registry-sec-
tion] . . .], [BitReg=bit-registry-section|,bit-registry-
section] . . .], [LoadOrderGroup=load-order-group-name],
[Dependencies=depend-on-item-name|[,depend-on-item-
name], and/or [Security="security-descriptor-string”] . . . |
(where %CurrentControlSet% is actually specified as that
literal text so that it may be substituted at application time of
the offline script format driver file when the ControlSet###
can be determined by looking at the key HKY LOCAL
MACHINE/System/Select and looking at the value of Cur-
rent, getting the decimal value for that DWORD and replac-
ing ### with that decimal value proceeding any values that are
not three digit decimal values with one or two zeros.) Corre-
sponding entries for the offline script format driver file cre-
ated from the processing of the service-install-section section
may result in the following lines: [A H KEY LOCAL
MACHINE/System/%CurrentControlSet%/services/[Servi-
ceName], A DisplayName :Sz="name”, A Description
“Sz="description-string”, A ImagePath :Sz="system32/driv-
ers/path-to-service”), A ErrorControl :DWord=error-control-
level, A Start :DWord=start-code, A Type :DWord=type-
code, and A Group :Sz+‘load-order-group-name’. Section
directives such as AddReg, DelReg, BitReg, and others may
be processed to create the offline script format driver file. In
an embodiment, during this process, another line may be
added to the offline script format diver file that is not obtained
from the processing of the INF file, but rather is generated by
the offline script format driver file processing engine, and that
line my include the following:

A Tag: DWord=@Tagl@

In an embodiment, @Tagl@ may be a number generated by
processing the Tags in the offline image and adding the “1” to
the end. Thus, for each Tag variable that is generated, a new
number is generated that is greater than the last (e.g.,
@Tagl@, @Tag2@, @Tag3@, etc.) That variable may then
be used later on in the offline script format driver file via the
designations @Tagl @, @Tag2@, @Tag3@, etc.

Another line may be added to the offline script file at this time,
and may include:

[A “WoCurrentControlSet%\Services\ServiceName\

Parameters\PnPInterface”)

In another example, the directive section processed at
block 320 may include an event-log-install-section that may
be provided in the INF driver file as [event-log-install-sec-
tion]. Examples of text in the event-log-install-section that are
processed at block 320 include [AddReg=add-registry-sec-
tion[,add-registry-section] . . .], [DelReg=del-registry-sec-
tion[,del-registry-section] . . .], and [BitReg=bit-registry-
section[,bit-registry-section] . . . |. While the processing of the
eventlog section and associated entries is not necessary in
order to get the target OS to boot, such processing may be
provided to accomplish a more complete processing of the
INF file.

US 9,424,054 B2

15

In another example, the directive section processed at
block 320 may include any of a plurality of registry sections
that may be provided in the INF driver file.

For example, an add-registry-section may be provided in
the INF driver file. The flags field, if provided, may modify
the resultant lines of text in the offline script format driver file
in different ways (e.g., to cause the adding a registry entry, the
deleting of' a registry entry, the changing of the type of registry
key that is passed to the registry, etc.). The add-registry-
section may be provided as the following text that may be
processed: [add-registry-section]|; reg-root,[subkey],[value-
entry-namel,[flags],[value]; reg-root, [subkey], [value-entry-
name], [flags], [value] . . . [[add-registry-section .security]
“security-descriptor-string”]. Corresponding entries for the
offline script format driver file created from the processing of
the add-registry-section section may result in the following
line: [Operation HKEY LOCAL MACHINE\subkey\|,
Operation value-entry-name :type=value, where type is
determined by the flags and can have values such as Sz,
DWord, Multi-Sz, Expand-Sz, or Binary, and Operation can
be A (for add) or M (for modify) depending on the flags
specified.

In another example, a del-registry-section provided in the
INF driver file as [del-registry-section]; reg-root,[subkey],
[value-entry-name],[flags],[value]; reg-root,[subkey],[value-
entry-name],[flags],[value} . . . may be processed. The flags
field, if provided, can modify the resultant lines of the offline
script format drive file in different ways. Corresponding
entries for the offline script format driver file created from the
processing of the del-registry-section section may include: [D
HKEY LOCAL MAHINE\subkey\] D value-entry-name
‘type=value.

In another example, a bit-registry-section as known in the
art may be provided in the INF driver file as [bit-registry-
section]; reg-root,[subkey],[value-entry-name],[flags], byte-
mask, byte-to-modify; reg-root,[subkey],[value-entry-
name],[flags] byte-mask, byte-to-modify, and may be
processed. The flags field, if provided, can modify the result-
ant lines in the offline script format driver file in different
ways. Corresponding entries for the offline script format
driver file created from the processing of the bit-registry-
section section may result in the following lines: [Operation
HKEY LOCAL MACHINE\subkey\] Operation value-en-
tryname :Binary—byte-mask, byte-to-modify, where Opera-
tion can be A (for add) or M (for modify) depending on the
flags specified.

In another example, the directive section processed at
block 320 may include a file-list-section that may be provided
in the INF driver file as [file-list-section].

When referenced from a CopyFiles directive, examples of
text in the file-list-section that are processed at block 320
include [file-list-section]; destination-file-name[,[source-
file-name|[,[unused][,flag]]] . . . [file-list-section.security]
“security-descriptor-string”. The flags field, if provided, can
modify the resultant lines in the offline script format driver
file in different ways. Corresponding entries for the offline
script format driver file created from the processing of the
file-list-section section may result in the following lines under
the [files] section of the offline script format driver file: copy
x:\temp\source-file-name c:\windows\destinationfile-name.

When referenced from a DelFiles directive, examples of
text in the file-list-section that are processed at block 320
includes [file-list-section]; destination-file-name[flag]. The
flags field, if provided, can modify the resultant lines in the
offline script format driver file in different ways. Correspond-
ing entries for the offline script format driver file created from
the processing of the file-list-section section may result in the

30

40

45

16

following lines under the [files] section of the offline script
format driver file: del c:\windows\destination-file-name.

When referenced from a RenFiles directive, examples of
text in the file-list-section that are processed at block 320
includes [file-list-section]; new-dest-file-name,old-source-
file-name]. Corresponding entries for the offline script format
driver file created from the processing of the file-list-section
section may result in the following lines under the [files]
section of the offline script format driver file: ren c:\windows/
old-source-file-name c:\windows\new-dest-file-name.

In another example, the directive section processed at
block 320 may include a log-config-section that may be pro-
vided in the INF driver file as [log-config-section]. Examples
of text in the log-config-section that are processed at block
320 include [ConfigPriority=Priority_Value[,Config_Type],
[DMAConfig=[DMAattrs:DMANum[,DMANum] . . .],
[IOConfig=io-range|,io-range] . . .], [MemConfig=mem-
range[,mem-range] . . . |, [IRQConfig=IRQattrs: [IRQNum],
IRQNum] . . . |, [PcCardConfig=ConfigIndex[:[Memory-
CardBasel |[:MemoryCardBase2]|[(attrs)]], and/or
[MfCardConfig=ConfigRegBase:ConfigOptions|:loRe-
sourcesIndex|[(attrs)] . . .].

As discussed above, it is not necessary to process the fea-
turescore section directives and associated entries, hardwa-
reid section directives and associated entries, ini2reg section
directives and associated entries, logconfig section directives
and associated entries, profileitems section directives and
associated entries, the AddInterface section directive and
associated entries, the AddPowerSetting section directive and
associated entries, the AddProperty section directive and
associated entries, and the DelProperty section directive and
associated entries of the INF file in order to allow a target
operating system to boot, but more complete processing of
the INF file may include performing a method block that
performs such processing. Similarly, it is not necessary to
process the event-log-install-section and associated entries or
the log-config-section and associated entries of the INF file in
order to allow a target operating system to boot, but more
complete processing of the INF file may include performing
a method block that performs such processing. When such
complete processing is desired, the directive section pro-
cessed at block 320 may include a profile-items-section that
may be provided in the INF driver file as [profile-items-
section]. Examples of text in the profile-items-section that are
processed at block 320 include [Name=link-name[,name-at-
tributes], [CMDLine=[dirid,[subdir],filename],
[SubDir=path], [WorkingDir=wd-dirid,wd-subdir],
[IconPath=icon-dirid,[icon-subdir],icon-filename],
[IconIndex=index-value], [HotKey=hotkey-value],
[Infotip=info-tip], and/or [DisplayResource="ResDIIPath/
ResDI1”,ResID]. Similarly, when such complete processing
is desired, the directive section processed at block 320 may
include a update-ini-section that may be provided in the INF
driver file as [update-ini-section]. Examples of text in the
update-ini-section that are processed at block 320 includes
ini-file,ini-section[,old-ini-entry|[,new-ini-entry|[,flags]
Similarly, when such complete processing is desired, the
directive section processed at block 320 may include a
update-inifields-section that may be provided in the INF
driver file as [update-inifields-section]. Examples of text in
the update-inifields-section that are processed at block 320
includes ini-file,ini-section, profile-name[,old-field][,new-
foe;d][,flags] Similarly, when such complete processing
is desired, the directive section processed at block 320 may
include a ini-to-registry-section that may be provided in the
INF driver file as [ini-to-registry-section]|. Examples of text in

US 9,424,054 B2

17

the ini-to-registry-section that are processed at block 320
includes ini-file,ini-section,[ini-key],reg-root,subkey
[,flags]

In another example, the directive section processed at
block 320 may include a register-dll-section that may be
provided in the INF driver file as [register-dll-section].
Examples of text in the register-dll-section that are processed
at block 320 includes dirid, subdir, filename, registration
flags[,[optional timeout][,argument]]. In an embodiment,
processing the register-dll-section may include creating a set
of'in-memory entries that represent what the resultant registry
entries should be, as is known in the art, so that a registry entry
will execute the dll registration process when the IHS boots.
For example, processing may include processing the dirid as
is specified in the WINDOWS® Driver Kit Documentation.
Corresponding entries for the offline script format driver file
created from the processing of the file-list-section section

may result in the following lines: [files] copy
dirid\subdir\filename offlinewindowsdrive:\windows\sys-
tem32, [A HKEY LOCAL MACHINE\Software\

Microsoft\Windows\CurrentVersion\RunOnce]. Unique-
name, below, is a name that is generated and that is a unique
registry value name under the key HKEY LOCAL
MACHINE\Software\Microsoft\Windows\CurrentVersion\
RunOnce.

If registration flags=FI.G REGSVR DLLREGISTER or
0x00000001,

A UniqueName :Expand-Sz="rundl132.exe%systemroot %\
system32\filename”.

If registration flags=FLLG REGSVR DLLINSTALL or
0x00000002,

A UniqueName :Expand-Sz="rundl132.exe/i1%systemroot%o\
system32\filename”.

If filename ends in .exe,

A UniqueName :Expand-Sz="“%systemroot%\system32\
filename [\RegSeverlargument]”.

In another example, the directive section processed at
block 320 may include a unregister-dll-section that may be
provided in the INF driver file as [unregister-dll-section].
Examples of text in the unregister-dll-section that are pro-

10

15

25

30

35

18

cessed at block 320 includes dirid, subdir, filename, registra-
tion flags[,[optional timeout][,argument]]. In an embodi-
ment, processing the unregister-dll-section may include
creating a set of in-memory entries that represent what the
resultant registry entries should be, as is known in the art, so
that a registry entry will execute the dll unregistration process
when the IHS boots. For example, processing may include
processing the dirid as is specified in the WINDOWS® Driver
Kit Documentation. Corresponding entries for the offline
script format driver file created from the processing of the
file-list-section section may result in the following lines: [A
HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunOnce]. Uniquename, below, is a name
that is generated and that is a unique registry value name
under the key HKEY LOCAL MACHINE\Software\
Microsoft\Windows\CurrentVersion\RunOnce.

It registration flags=FI.G REGSVR DLLREGISTER or
0x00000001,

A UniqueName :Exapnd-Sz="rundll32.exe /u%systemroot
%\system32\filename”.

If registration flags=FLG REGSVR DLLINSTALL or
0x00000002,

A UniqueName :Exapnd-Sz="rundll32.exe /u /i %system-
root%\system32\filename”.

If filename ends in .exe,

A UniqueName :Exapnd-Sz="%systemroot%\system32\
filename [\UnRegSeverlargument]”.

Following block 320, the INF driver file has been pro-
cessed by the INF file processing engine 204 to produce an
offline script format driver file, which is then provided to the
offline script format driver file provider system 206. As dis-
cussed above, the offline script format driver file provider
system 206 may be on the IHS 200 that is the destination IHS
such that the INF driver file is converted to the offline script
format driver file on the IHS that is to use it offline. In another
embodiment, the offline script format driver file provider
system 20606 may provide the offline script format driver file
over a network to another IHS for storage and/or use.

An example of an offline script format driver file, created
during the method 300, may include the following:

[set]

Current=@valnum=\Select\Current@

[files]

%fileOp1% glsdm.dll

%fileOp1% glco.dll

%fileOp1% qlsdmx64.dll
%fileOp1% glcox64.dll
%fileOp1% Qlpropx64.dll
%fileOp1% QlFcx64.exe

%fileOp1% ql2300.sys
%fileOp1% ql2x00.inf
%fileOp1% ql2300.cat

%InjectWindowsDir%\SysWOW 64\
%InjectWindowsDir%\SysWOW64'\qlco1006.d11
%InjectWindowsDir%\system32\qlsdm.dll
%InjectWindowsDir%\system32\qlco1006.d11
%InjectWindowsDir%\system32\QIPPFc.dll
%InjectWindowsDir%\system32\QlFc.exe
%InjectWindowsDir%\system32\drivers\
%InjectWindowsDir%\infloem@OemInf@.inf
%InjectWindowsDir%\system32\CatRoot\{ F750E6C3-38EE-11D1-
85E5-00C04FC295EE oem%0OemIn{%.cat

[A “\ControlSet00%Current%\Services\ql2300”]

A ErrorControl
A Start

A Type

A Group

A ImagePath
ATag

: DWord = 0x00000001

: DWord = 0x00000000

: DWord = 0x00000001

: Sz = “SCSI Miniport”

: Sz = system32\drivers\ql2300.sys
: DWord = @Tagl@

[A “\ControlSet00%Current%\Services\ql2300\Parameters\PnPInterface’]
A “5” : DWord = 0x00000001

[A

“\ControlSet00%Current%\Control\CriticalDeviceDatabase\PCI#VEN__1077&DEV__2532&SUBS

YS_015C10777]
A ClassGUID

A Service

[A

: Sz = “{4D36E97B-E325-11CE-BFC1-08002BE10318}”
1 Sz = “ql2300”

“\ControlSet00%Current%\Control\CriticalDeviceDatabase\PCI#VEN__1077&DEV__2532&SUBS

US 9,424,054 B2

19

-continued

20

YS_015D10777]
A ClassGUID

A Service : Sz =%ql2300”

: Sz = “{4D36E97B-E325-11CE-BFC1-08002BE10318}”

Although illustrative embodiments have been shown and
described, a wide range of modification, change and substi-
tution is contemplated in the foregoing disclosure and in some
instances, some features of the embodiments may be
employed without a corresponding use of other features.
Accordingly, it is appropriate that the appended claims be
construed broadly and in a manner consistent with the scope
of the embodiments disclosed herein.

What is claimed is:

1. An offline script format driver file creation system, com-

prising:
a processing system;
a memory system coupled to the processing system and
including instruction that, when executed by the pro-
cessing system, cause the processing system to provide
at least one engine that is configured to:
read a driver installation file into the memory system
such that a representation of the driver installation file
is stored in the memory system;

replace variables in the representation of the driver
installation file with associated value data from a first
section of the driver installation file that provides
variable to string substitution values;

process a second section in the representation of the
driver installation file that provides information about
the driver installation file and a type of device the
driver installation file supports, wherein the process-
ing the second section includes capturing version data
and a unique identifier in the representation of the
driver installation file and storing that version data
and unique identifier in the memory system;

process a third section in the representation of the driver
installation file that provides a list of distribution disks
that contain the files required for installation and
operation of the driver installation file, a list of files
used during installation of the driver installation file,
and associated disks and directories on those disks,
wherein the processing the third section includes
retrieving disk identification data and combining the
disk identification data with data that references the
disk identification data in order to create and store a
list of disk names and files within those disk names in
the memory system;

process a fourth section in the representation of the
driver installation file that includes information used
to identify operating systems supported by the driver
installation file, wherein the processing of the fourth
section creates a list of all possible models sections
from value data included in a manufacturer value
name to determine which models sections support
which operating systems;

process a fifth section in the representation of the driver
installation file that includes operating system com-
patibility details for specific models of hardware,
wherein the processing of the fifth section includes
creating and storing information that describes which
models section in the driver installation file is com-
patible with which operation system; and

process a sixth section in the representation of the driver
installation file that includes plug and play hardware

10

15

20

25

30

35

40

45

50

55

60

65

identifications that the driver installation file is com-
patible with and, for each portion of the sixth section
that includes device driver installation details, process
sections directives in that portion that include registry
actions or file actions;

wherein the processing of the first section, the second
section, the third section, the fourth section, the fifth
section, and the sixth section provides an offline script
format driver file that is configured to provide for
offline driver installation in an information handling
system (IHS) when an operating system in the IHS is
not running.
2. The system of claim 1, wherein the memory system
includes instruction that, when executed by the processing
system, cause the processing system to provide the at least
one engine that is configured to:
perform the offline driver installation to install a driver
associated with the driver installation file when an
instance of the operating system for the IHS is not oper-
ating.
3. The system of claim 1, wherein the driver installation file
is processed to provide the offline script format driver file at
runtime of the THS.
4. The system of claim 1, wherein the offline script format
driver file created from the driver installation file is stored in
a network storage device.
5. The system of claim 1, wherein the offline script format
driver file is provided over a network to the ITHS.
6. The system of claim 1, wherein the processing the sec-
ond section includes testing the second section for validity by
testing for all required value names and their associated val-
ues.
7. The system of claim 1, wherein the at least one engine is
further configured to:
create a registry entry line and a registry entry that, on first
boot up of the IHS after an off line modification, allows
the IHS to boot.
8. A first information handling system, comprising:
a processor coupled to a network;
a memory device coupled to the processor and including
instruction that, when executed by the processor, cause
the processor to:
read information (INF) files into the memory device
such that a representation of the INF files is stored in
the memory device;

replace variables in the representation of the INF file
with associated value data from a Strings section of
the INF files that provides variable to string substitu-
tion values;

process a Version section in the representation of the INF
files by capturing version data and a unique identifier
in the representation of the INF files and storing that
version data and unique identifier in the memory
device;

process a Disk Names and Files section in the represen-
tation of the INF files to retrieve disk identification
data and combine the disk identification data with
data that references the disk identification data in
order to create and store a list of disk names and files
within those disk names in the memory system;

US 9,424,054 B2

21

process a Manufacturer section in the representation of
the INF files to create a list of all possible models
sections from value data included in a manufacturer
value name to determine which models sections sup-
port which operating systems;

process a Operating System Version Compatibility of
Models sections in the representation of the INF files
to create and store information that describes which
Models section in the driver installation file is com-
patible with which operation system; and

process a Models section in the representation of the INF
files, wherein for Device Driver install (DDInstall)
sections of the Models section that includes device
driver installation details, sections directives in that
DDlnstall section that include registry actions or file
actions are processed;

wherein the processing of the Strings section, the Ver-
sion section, the Disk Names and Files section, the
Manufacturer section, the Operating System Version
Compatibility of Models section, and the Models sec-
tion provides an offline script format driver file that is
configured to provide for offline driver installation in
a second IHS when an operating system in the second
THS is not running.

9. The first IHS of claim 8, wherein the memory system
includes instruction that, when executed by the processing
system, cause the processing system to provide the at least
one engine that is configured to:

perform the offline driver installation to install a driver

associated with the driver installation file when an
instance of the operating system for the second IHS is
not operating.

10. The first IHS of claim 8, wherein the driver installation
file is processed to provide the offline script format driver file
at runtime of the second IHS.

11. The first IHS of claim 8, wherein the offline script
format driver file created from the driver installation file is
stored in a network storage device.

12. The first IHS of claim 8, wherein the offline script
format driver file is provided over the network to the second
IHS.

13. The first IHS of claim 8, wherein the processing the
second section includes testing the second section for validity
by testing for all required value names and their associated
values.

14. The first IHS of claim 8, wherein the memory device
further includes instruction that, when executed by the pro-
cessor, cause the processor to:

create a registry entry line and a registry entry that, on first

boot up of the second IHS after an offline modification,
allows the second IHS to boot.

15. A method for creating an offline script format driver
file, comprising:

reading information (INF) files into a memory data struc-

ture such that a representation of the INF files is stored in
the memory data structure;

10

20

25

40

45

55

22

replacing variables in the representation of the INF file
with associated value data from a Strings section of the
INF files that provides variable to string substitution
values;

processing a Version section in the representation of the

INF files by capturing version data and a unique identi-
fier in the representation of the INF files and storing that
version data and unique identifier in the memory data
structure;

processing a Disk Names and Files section in the represen-

tation of the INF files to retrieve disk identification data
and combine the disk identification data with data that
references the disk identification data in order to create
and store a list of disk names and files within those disk
names in the memory data structure;

processing a Manufacturer section in the representation of

the INF files to create a list of all possible models sec-
tions from value data included in a manufacturers value
name to determine which models sections support which
operating systems;

processing a Operating System Version Compatibility of

Models sections ihn the representation of the INF files to
create and store information that describes which Mod-
els section in the driver installation file is compatible
with which operation system; and

processing a Models section in the representation of the

INF files, wherein for Device Driver install (DDInstall)
sections of the Models section that include device driver
installation details, sections directives in that DDInstall
section that include registry actions or file actions are
processed;

wherein the processing of the Strings section, the Version

section, the Disk Names and Files section, the Manufac-
turer section, the Operating System Version Compatibil-
ity of a Models section, and the Models section provides
an offline script format driver file that is configured to
provide for offline driver installation in an information
handling system (IHS) when an operating system in the
THS is not running.

16. The method of claim 15, further comprising:

performing the offline driver installation to install a driver

associated with the driver installation file when an
instance of the operating system for the IHS is not oper-
ating.

17. The method of claim 15, wherein the driver installation
file is processed to provide the offline script format driver file
at runtime of the THS.

18. The method of claim 15, further comprising:

storing the offline script format driver file in a network

storage device.

19. The method of claim 15, further comprising:

providing the off line script format driver file over a net-

work to the IHS.

20. The method of claim 15, further comprising:

creating a registry entry line and a registry entry that, on

first boot up of the IHS after an off line modification,
allows the THS to boot.

#* #* #* #* #*

